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THICKNESS 

We investigate shear oscillations of a thin elastic layer 0 s,? s&x) of variable thick- 

ness, where h(x) is a sufficiently smooth function, One boundary of this layer is free, 
while the other is in contact with a nonhomogeneous elastic medium, the contact defined 

by a boundary condition containing an impedance. Oscillations are of high-frequency 

Here u) is the frequency and b denotes the rate of propagation of shear waves. The 

displacement vector is parallel to the Y-axis. 
Solution of the problem is constructed in the form of special asymptotic power series 

in st-“~. Displacements of the layer are expressed in terms of ?&x) and of the properties 
of the elastic medium in contact with the layer. Expressions are found for the phase and 

group velocity within the layer. Final formulas are also obtained by another method 
based on the idea of constructive interference of the volume waves. Radial interpretation 
of the dependence of wave intensity on the variables x and z and ray tracing method, 
are used to obtain the decay of perturbations propagating along the layer. 
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1. Let us consider a homogeneous elastic layer 

0 < z < h (I..) (1.1) 
in the Cartesian coordinate system. 

Equations of the theory of elasticity (under a wide class of boundary conditions) allow 

us to isolate. from the general problem on oscillations of a layer (1.1). a scalar problem 

for displacements U parallel to the y-axis 

u -= ePiUrj,, (x, z, Ir), k = cob-1 (1.2) 

Lamk equation yields the Helmholtz equation 

UXX -1 u** -+ klu = 0 (1.3) 

We assume that the boundary 2 = 0 is stress-free 
!A I L=O =O (1.4) 

while on z = h we have the following boundary condition with an impedance 

uz - ikg (.r) u ( = L IL(X) == “P g (4 > 0 (f-5) 

which describes the interaction between the layer and a nonhomogeneous elastic medium 
situated in the region 8 > b(x) and characterized by the wave propagation velocity 

equal to &(x,2) <b. When W-‘cn ,we have 

g (4 = 
PI (2, 2) bl (I, 2) l/b3 -ha (p, z) 

pba I 2=/r(x) 
(1.6) 

where p and pl(x, z ) denote densities of the medium contained in the layer (1. l), 

and the region z > h(x) , respectively. Functions h(x) and Q(X) shall be assumed to 

be sufficiently smooth (e. g. functions and their second derivatives are both assumed to 

be continuous). 
Let us consider the eigenfunctlons of the problem (1.3) to (1.5) possessing a character 

of the waves travelling along the x-axis (Love waves) 

~(a, z, k)= CJt+ (1.7) 

We shall seek these eigenfunctions in a high-frequency approximation, i.e. when 

kh (I) > 1 (1.8) 

(thickness of the layer is much greater here, than the wavelength). Moreover, we shall 

study such solutions of the problem (1.3) to (1.5). which correspond to the rays reflecting 
alternately from both boundaries of the layer. We find that such an alternating reflec- 
tion certainly takes place when 

kh (I) h’ (2) < I (1.9) 

I.e. when the thickness of the layer is small and varies with x so smoothly, that this vari- 
ation is small compared with (kh)-I. Inequalities (1.8) and (1.9) limit the frequency 
of oscillations under consideration both, from above and from be-low. 

2. The problem stated above differs from the usual problem of determining the high- 
frequency asymptotlcs; we cannot say that the large parameter kh exceeds all the other 
dlmenslonless parameters of the problem by a large amount. 

To construct the solution, we shall have to assume that 

II (I) = k-P f (z) ('ia < P < 1) (2.1) 

with f(x) assuming finite values. Then, conditions (1.8) and (1.9) will hold, provided 
that k is sufficiently large. 
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We shall also introduce an independent variable 6 = kPZ . Then, from (1.7) we shall 

obtain the following problem for the function U(X, 6. k) : 

u xx -I- : ka*Urr + 2ikUx = 0, UC IL=,, = 0, Uy + tk I-Pg(:c) (I Ic=f(r) = 0 (2.2) 

which does not contain a large parameter of the same order as k , and competing with 
it. Asymptotic expansion of its solution (with k +Z and an arbitrary, though fixed f(x)), 
shall be sought in the form 

U (1, 5, k) = exp [k”cp‘(z) + A (x, 6, k)] cos L (2, j, k) 

Here cp (x), a (2, C,), a (I, 51, B (x9 5) and b (x, 51, . . . are functions to be determined, 

while q and p are unknown values. Inserting (2.3) into (2.2) and equating to zero the 
coefficients of each power of k , we obtain a recurring system of differential equations 

and boundary conditions for the unknown functions. To secure the existence of nontrivial 
solutions of this system, we find it necessary to put p = “/a and 4 = l/z . 

Omitting the actual procedure of obtaining it, we shall now state the final result, 

Problem (2.2) possesses an enumerable set of solutions given by the following asymptotic 
formulas : 

(m = 1, 2, 3, . .) (2.4) 
where c, is an arbitrary functioh of k , and 

f (2) = k’!‘h (x), b = k% 

Choice of the point x = 0 is arbitrary. The function ?J (x) will not be quoted here in 
full since it is comparatively bulky. and we shall just mention that functions f (z), g (2)~ 

f’(z), g’(z) and f”(r) all enter into it. 
Inserting (2.4) into (1.7) and (1.2) we obtain formulas for displacements corresponding 

to separate Love waves. A multiplier 

cxp [- ( m - +-)’ n2 % pi&)] 
(2.5) 

describes, in an approximate manner, the decay of Love waves caused by their interaction 
with the medium situated a: ;: > h(x) . 

Phase ~2”” and group v2 m velocities of these waves on the basis of (2.2) are 

(2.6) 

Region of applicability of the formulas obtained can be deduced from the form of 
asymptotics of (2.2). When the functions h(x) and g(x) are smooth, the condition that 

(1.8) holds together with the inequalities 

kh (2) h’ (2) 4 m, kh (x) > m (2.7) 
is sufficient. 

kh (z) >> rtg- l ix), 

Then Formulas (1.2). (1.7). (2.4) and (2.6) describe the behavior of Love waves 
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propagating in the layer (1.1) with alternate reflections from its boundaries. 

Similar asymptotic formulas can also be obtained for a layer with variable velocity 
b = b(x, Z) . Results of [l] show clearly that in this case new solutions appear in addi- 
tion to those of the form (2.4). The cosine multiplier is replaced, in these solutions, by 

a multiplier containing an Airy integral. 

3. All essential parts of the above results can be obtained using the radial approach, 

which allows a clear interpretation of the process of propagation of the interference 
waves. 

Relation (2.6) for the phase velocity can be obtained by the method of constructive 

interference [2 and 31. We assume that energy, in the considered medium, is basically 

propagated along the rays, alternately reflecting from the boundaries Z = 0 and z = h , 
where the phases of reflection coefficients are 0 and IJ , respectively. Moreover, in order 
to obtain Formula (2.6) for t.I(‘“) , we must assume that 

tg6 &9< 1 (3.1) 

‘/.$I - 8 G$ 1 (3.2) 

where 8 is the angle of incidence of the ray on the boundary, while $ is the angle be- 
tween the tangent to the boundary z = h(x) and the x-axis. Condition (3.1) is equi- 
valent to the first inequality of (2.7). It expresses the requirement that the thickness of 

the layer varies, over the distance n between the two neighboring points of incidence of 

the ray, by an amount which is small compared with h (I) i.e. h’ (z)A < h (z) . 

With this condition fulfilled, h’ (x) does not influence the principal terms of the expres- 
sion for ,~l(mJ Inequality (3.2) infers that phase velocities of the waves under considera- 

tion, differ little from the velocity of shear waves in the layer, and is equivalent to the 

third inequality of (2.7). 
The same method can be used to obtain the formula for group velocity (with the hori- 

zontal distance A divided by the time of passage along the ray). 
Principal terms of (2.4) can be obtained by summation of waves of two types, of these 

moving towards the boundary Z = 0 with those moving towards z = h(x) . If we neglect 
the absorption on the second boundary (this corresponds to g (x) -) a) , then the summa- 

tion will yield the factor cos In (m - liz) if-l (x)1 which is the fundamental S-depend- 

ent factor appearing in the right-hand side of (2.4). 
Appearance of the factor 1-l’ (s) 1 in (2.4) is related to an obvious increase (decrease) 

in the energy density when the thickness of the layer decreases (increases). 

Let us now consider the exponential decay of the Love waves along the layer. Boundary 
condition with an impedance (1.5) has a corresponding coefficient of reflection of a 
plane wave x (J) = (cos 0 - g (X)1 / [COR 0 + g (X)] 

which becomes 2 cos I3 
x (.r) z - 1 + 7c.c) (3.3) 

when cosf3 ! g (2) < 1 the latter condition being equivalent to the second inequality of 

(2.7). 
Such a reflection coefficient occurs e.g. when a layer moving with an increased velo- 

city is in a rigid contact with a semi-space moving at a reduced velocity. But then For- 
mula (1.6) is valid for g (x) . 

Formula (3.3) implies that when a wave of unit amplitude is reflected from the 
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boundary z = h(x) , then the amplitude diminishes by a small amount equal to 

2 ~oseg-~(x) . Obviously, the field of such a wave should vary smoothly along the 

layer. Then, the unit amplitude will be reduced, over the unit distance in the Xdirec- 

tion, by cost 0 / h (2) g (2) 

since A = 2h( X) tg8 . Assuming that the amplitude decrement is proportional to its 

absolute magnitude and to the distance spanned along the x-axis, we obtain, by elemen- 

tary integration, the factor (2.5) defining the decay. 
Taking now into account the influence of variation in amplitude in the X-direction 

on the variation of amplitude in the z -direction, we obtain a more accurate expression 
involving the change in intensity with depth within the layer, and we shall find that this 
expression is identical w’ith the complete cosine multiplier appearing in (2.4). 

We see therefore, that the radial approach also yields the principal terms of (2.4) and 

(2.6) under the same assumptions concerning the properties of the medium and the fre- 

quency of oscillations. 
Results obtained by us are applicable, primarily, in geophysics. For example, they pro- 

vide a theoretical justification for use of a widely employed method of determination 

of variable thicknesf of the Earth’s crust by utilizing localized values of phase velocities 

of the Love waves. They may also be of interest in mechanics of thin layers and plates, 
in connection with still increasing importance of the impulsive and high frequency 
effects. 
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